命題論理
命題論理の基本単位は「真または偽のどちらか一方であるような主張」であり、これを命題変数と呼ばれる概念として定式化します。また、より複雑な主張を生成する操作を命題変数どうしを組み合わせる操作として定式化し、そのような操作のルールを定めます。その上で、与えられたルールからどのような推論規則が導かれるかを明らかにしようとします。
224円 ピープル 集中しすぎてごメンなさい!748円 ベビー、キッズ、マタニティ おもちゃ、教材 ガラガラ、ラトル 224円 ピープル 集中しすぎてごメンなさい!748円 ベビー、キッズ、マタニティ おもちゃ、教材 ガラガラ、ラトル 集中しすぎてごメンなさい!748円,moxxwan.com,224円,ピープル,ベビー、キッズ、マタニティ , おもちゃ、教材 , ガラガラ、ラトル,/gmelinite908537.html 集中しすぎてごメンなさい!748円,moxxwan.com,224円,ピープル,ベビー、キッズ、マタニティ , おもちゃ、教材 , ガラガラ、ラトル,/gmelinite908537.html ピープル 集中しすぎてごメンなさい 748円 今年の新作から定番まで! ピープル 集中しすぎてごメンなさい 748円 今年の新作から定番まで!
なめかみしている姿がかわいい”ラーメン歯がため”新登場!新触感のぐにぐに感・ザラザラ・つぶつぶなどの5つの感触を楽しめます。細くて軽いので、4ヶ月の赤ちゃんでも楽々自分で持つことができます。■対象年齢:4ヶ月以上【ピープル】
なめかみしている姿がかわいい”ラーメン歯がため”新登場!新触感のぐにぐに感・ザラザラ・つぶつぶなどの5つの感触を楽しめます。細くて軽いので、4ヶ月の赤ちゃんでも楽々自分で持つことができます。■対象年齢:4ヶ月以上【ピープル】
命題論理の基本単位は「真または偽のどちらか一方であるような主張」であり、これを命題変数と呼ばれる概念として定式化します。また、より複雑な主張を生成する操作を命題変数どうしを組み合わせる操作として定式化し、そのような操作のルールを定めます。その上で、与えられたルールからどのような推論規則が導かれるかを明らかにしようとします。
命題論理の基本単位が命題変数であったのに対し、述語論理では命題関数と呼ばれる概念が基本単位となります。それにより扱うことのできる言明の範囲が広がるとともに、量化と呼ばれる操作が可能になります。
集合論は数学の土台です。あらゆる数学的概念は集合を用いて記述できます。ここでは集合を定義した上で、集合演算とその性質について学び、さらには集合族や直積集合、関係などについて学びます。
初等数学で学んだ「関数」とは、入力した実数に対して何らかの実数を返す概念として理解できます。関数を一般化した概念が写像です。写像とはある集合のそれぞれの要素に対して別の集合の要素を1つずつ定めるような規則のことです。本節では写像について学びます。
複数の物事が互いに関わり合っている状態を「関係」と呼びますが、これは数学的には2つの集合の直積の部分集合として定義されます。関係や二項関係、同値関係などについて解説します。
有限個の要素を持つ集合については、その要素の個数は有限な自然数として表現されます。一方、無限個の要素を持つ集合については、すべての要素を数え尽くすことができないため、要素の個数を自然数として表現できません。集合の濃度とは要素の個数を一般化した概念であり、これを用いることにより無限どうしを比較できるようになります。
実数を無限小数として定義する場合、実数に関する議論はすべて無限小数に関する議論として行うことになり面倒です。そこで代替的な方法として公理主義的なアプローチのもとで実数を定義します。ここでは実数を特徴づける公理について解説します。
数列に関するテキストと演習問題です。数列という概念を定義した上で、さらに収束列、単調数列、区間列、部分列などについて学び、これらの概念を使って実数の連続性を表現できることを確認します。
n 次元空間上にベクトル加法やスカラー乗法などの演算や大小関係を定義すると、実順序ベクトル空間になります。実順序ベクトル空間上にユークリッド距離と呼ばれる概念を定義したものがユークリッド空間です。
ユークリッド空間上の無限個の点を順番に並べたものを点列と呼びます。点列は実数列を一般化した概念です。ここでは点列が収束することの意味を定義した上で、収束点列の性質について解説します。
実数空間もしくはその部分集合を定義とし、ユークリッド空間を終集合とする写像を曲線やベクトル値関数などと呼びます。ここでは曲線の収束や連続性などについて解説します。
多変数関数(スカラー場)という概念を定義するとともに、多変数関数が有限な実数へ収束すること、および連続であることの意味を定義した上で、連続な多変数関数の性質について解説します。
本節では多変数のベクトル値関数(ベクトル場)が収束することの意味や、連続であることの意味を解説します。本節で得られる知識は後に多変数のベクトル値関数の微分について学ぶ際の前提知識となります。
1変数関数の微分について学びます。具体的には、微分の概念を定義した上で、微分の基本性質や初等関数の微分、平均値の定理、高階の微分、テイラーの定理などについて学びます。これらの知識は後に1変数関数を目的関数とする最適化について学ぶ上での基盤になります。
与えられた制約条件のもとで関数の値を最大化または最小化する変数の値を求めることを最適化と呼びます。ここでは微分可能な関数を対象とする様々な最適化問題の解法を解説します。
体と非空の集合上に定義されたベクトル加法とスカラー乗法と呼ばれる演算がベクトル空間の公理を満たす場合、そのような集合をベクトル空間と呼びます。ここではベクトル空間を定義した上で、その基本的な性質を確認します。
凸関数(凹関数)と呼ばれる関数を定義するとともに、与えられた関数が凸関数(凹関数)であることを判定する方法や、凸関数(凹関数)の基本的な性質について解説します。
準凸関数(準凹関数)と呼ばれる関数を定義するとともに、与えられた関数が準凸関数(準凹関数)であることを判定する方法や、準凸関数(準凹関数)の基本的な性質について解説します。
集合のそれぞれの要素に対して別の集合の部分集合を1つずつ定める規則を対応と呼びます。ここでは対応、対応による像、逆像(上逆像・下逆像)、逆対応、対応の連続性(上連続性・下連続性)、ベルジュの最大値定理、および不動点定理などについて解説します。
長さや面積、体積などはいずれも同一種類の小さい量を加え合わせることでより大きな量をつくることができるという意味において外延的な量です。一般に、外延量は測度と呼ばれる概念として一般化されます。ここでは実数空間(数直線)の部分集合を測定対象とするルベーグ測度について解説します。
試行において起こり得る標本点は数値であるとは限りません。確率に関して定量的な分析を行うために確率変数と呼ばれる概念を用いて標本点を数値化します。確率分布とは、様々な事象の起こりやすさを確率変数を用いて表現したものに相当します。
世の中に存在する資源は有限であり、加えて消費者は所得をはじめとする様々な制約に直面しているため、好きなものを好きなだけ消費できるわけではありません。だからこそ消費者が何をどのように選ぶのかという問題について考える意味があります。消費者理論は、様々な制約に直面する消費者がどのような意思決定を行うかを明らかにしようとします。
世の中に存在する資源は有限であり、加えて生産者は技術水準や資本をはじめとする様々な制約に直面しているため、好きなものを好きなだけ生産できるわけではありません。生産者理論は、様々な制約に直面する生産者がどのような意思決定を行うかを明らかにしようとします。
市場において商品が少数の生産者によって供給されている場合や商品の差別化が行われている場合などにはプライス・テイカーの仮定は成り立たず、生産者は価格を主体的に操作できます。そのような不完全競争市場における生産者の行動を分析します。
ゲーム理論について本格的に学ぶ前に、ゲーム理論の概要を解説します。ゲーム理論の分析対象である戦略的相互依存関係とは何か、ゲームにはどのような種類が存在するか、ゲーム理論はどのような歴史を辿って発展してきたか、その概要を解説します。
完備情報の静学ゲームとは非協力かつ静学かつ完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは意思決定を行う際に他のプレイヤーたちが行った意思決定を事前に観察できず(静学)、なおかつゲームのルールはプレイヤーたちにとって共有知識です(完備情報)。完備情報ゲームにおける均衡概念はナッシュ均衡です。
不完備情報の静学ゲームとは非協力かつ静学かつ不完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは意思決定を行う際に他のプレイヤーたちが行った意思決定を事前に観察できず(静学)、なおかつ少なくとも1人のプレイヤーがゲームのルールに関して私的情報を持ちます(不完備情報)。不完備情報ゲームにおける均衡概念はベイジアンナッシュ均衡です。
完備情報の動学ゲームとは非協力かつ動学かつ完備情報であるようなゲームのことです。つまり、そこではプレイヤーたちの間に拘束的な合意は成立せず(非協力)、それぞれのプレイヤーは順番に意思決定を行い(動学)、なおかつゲームのルールはプレイヤーたちの共有知識です(完備情報)。
1つの商品をめぐって複数の買い手たちが入札を行うオークションにおいて、それぞれの入札者は商品に対する評価額、すなわち商品に対して支払ってもよい金額を持っていますが、これは私的情報です。以上の状況において望ましいオークションルールを考察します。
異なる種類の商品が同時に売りに出され、入札者が商品の組合せに対して入札を行うオークションにおいて、それぞれの入札者は商品の組み合わせに対する評価額を持っていますが、これは私的情報です。以上の状況において望ましいオークションルールを考察します。
商品を1つずつ所有している複数のプレイヤーが何らかのルールにもとづいて商品を交換しようとしている状況を非分割財の交換問題(シャプレー・スカーフ経済、住宅市場モデル)と呼ばれるモデルを定式化した上で、そこでの望ましいメカニズム、すなわち商品交換ルールについて解説します。
2つのグループに分かれたプレイヤーたちを何らかのルールにもとづいてグループ間で1対1でマッチングさせる資源配分問題を1対1のマッチング問題(安定結婚問題)と呼ばれるモデルとして定式化した上で、そこでの望ましいマッチングルールについて解説します。
ルベーグ可測集合族は実数空間Rの開集合系を部分集合として持つσ-代数ですが、他にも同様の性質を満たすRの部分集合族は存在するのでしょうか。ボレル集合族はそのような性質を満たすRの部分集合族の中で最小のものです。
実数空間 R の空でない部分集合 A が上に有界であるとともに、A の上界からなる集合 U(A) の最小値が存在するならば、それを A の上限と呼びます。また、A が下に有界であるとともに、A の下界からなる集合 L(A) の最大値が存在するならば、それを A の下限と呼びます。
数列の項が先に進むにつれてある実数に限りなく近づく場合には、その数列は収束すると言い、その実数を数列の極限と呼びます。ただし、「限りなく近づく」という表現は曖昧であるため、イプシロン・エヌ論法を用いて収束列の概念を厳密に定義します。
起こり得るすべての結果は分かっていても、その中のどの結果が実際に起こるかはランダムネスによって支配されている実験や観察を試行と呼びます。試行によって起こり得る個々の結果を標本点と呼び、すべての標本点からなる集合を標本集合と呼びます。試行によって起こり得る現象は標本空間の部分集合として定式化され、それを事象と呼びます。
写像 f:A→B が終集合のそれぞれの要素 b∈B に対して定める逆像 f⁻¹(b) が 1点集合である場合には、f⁻¹(b)とそこに含まれる 1 つの要素を同一視した上で、B のそれぞれの要素 b に対して X の要素 f⁻¹(b) を 1 つずつ定める写像 f⁻¹:B→A を作ることができます。この写像 f⁻¹ を f の逆写像と呼びます。
自然指数関数とは限らない指数関数がテイラー(マクローリン)展開可能であるための条件と特定するとともに、そのテイラー(マクローリン)級数を特定します。
多変数関数が凸関数であることとその関数のエピグラフが凸集合であることは必要十分であり、多変数関数が凹関数であることとその関数のハイポグラフが凸集合であることは必要十分です。
区間上に定義された関数の不定積分ないし定積分を具体的に特定することが困難である場合でも、被積分関数が複数の関数をあるパターンのもとで組み合わせる形で表現されていることに気づいた場合には、それを容易に積分できます。
区間上に定義された関数の不定積分ないし定積分を具体的に特定することが困難である場合には、被積分関数の変数を適切な形で変換することにより容易に積分できるようになる場合があります。
区間上に定義された連続関数どうしの差として定義される関数の不定積分は、もとの関数の不定積分どうしの差をとれば得られます。定積分についても同様の関係が成り立ちます。
区間上に定義された連続関数どうしの和として定義される関数の不定積分は、もとの関数の不定積分どうしの和をとれば得られます。定積分についても同様の関係が成り立ちます。
ユダヤ教はキリスト教やイスラム教徒と同様、唯一絶対の神から与えられた啓典を信仰の基盤にする啓典宗教です。ユダヤ教の特徴は、集団救済の宗教であり、外的規範の実践を重視する規範宗教であるという点です。その意味を解説します。
写真が本格的に発達した19世紀の中頃は、絵画を中心に印象派が勃興した時代でもあります。印象派の作風は写実主義の対極にあるように見えますが、実は、その成り立ちは写真の発明や普及と深い関係があることが指摘されています。写真が普及するまでの歴史的経緯を追いながら、印象派に及ぼした影響について解説します。
0は自然数なのでしょうか。0を自然数に含める流儀と含めない流儀がありますが、どちらが正しいか決め手はありません。重要なのは定義を共有しておくことです。ここでは後続集合を用いた定義や、帰納的集合を用いた定義などを紹介します。
モノの値段は需要と供給がバランスする点に落ち着くのであるならば、商品の需要や供給が何らかの理由によって変化したとき、両者がバランスする点も変わるため、それに応じて商品の価格も変化することになります。では、商品の総需要や総供給はどのような理由から変化するのでしょうか。経済学に馴染みのない方向けに分かりやすく解説します。
モノやサービスの値段は需要と供給のバランスから決定されますが、その背後にあるメカニズムを経済学に馴染みのない方向けに分かりやすく解説します。
オークションの入札者は商品への評価額などを私的情報として持っています。入札者たちが自身の利益を最大化するために真の評価額とは異なる金額を入札する結果、オークション市場ではインセンティブの問題が発生します。オークション理論はインセンティブの問題を解消するためのオークションメカニズムを設計する学問です。
プレミアム会員向けの挑戦問題です。シャーロック・ホームズによる推論の妥当性を命題論理を用いて証明する問題です。回答提出期限は【2021年3月14日】です。
プレミアム会員向けの挑戦問題です。入力した実数に対して、それを超えない最大の整数を返す関数の導関数を求める計算問題です。回答提出期限は【2021年3月7日】です。
プレミアム会員向けの挑戦問題です。スカラー場(2変数関数)が定義域上の点において連続、偏微分可能、方向微分可能、全微分可能であるかをチェックする計算問題です。回答提出期限は【2021年2月28日】です。
プレミアム会員向けの挑戦問題です。3つの部屋の中のどの部屋が空いているかを特定する論理パズルです。命題論理を用いて答えを導出してください。回答提出期限は【2021年2月14日】です。
プレミアム会員向けの挑戦問題です。関数が定義域上の点において連続であることの意味は様々な形で表現されますが、その中でも、関数の極限を用いた定義とイプシロン・デルタ論法を用いた定義が必要十分であるか否かを示してください。回答提出期限は【2021年2月7日】です。